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PART 1: BACKGROUND
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The Large Hadron Collider
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Online triggering and
filtering in detectors

Event simulation
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It would have been impossible to release physics results so quickly without

the outstanding performance of the Grid (including the CERN Tier-0)

Number of concurrent ATLAS jobs Jan-July 2012

Running jobs
181 Days from Week 01 of 2012 to Week 26 of 2012

160,000

Includes MC production,
140,000 user and group analysis
at CERN, 10 Tierl-s,

~ 70 Tier-2 federations
- > 80 sites

120,000

> 1500 distinct ATLAS users
do analysis on the GRID

ol B L ] e Ol L P I | MW+ )t i 1 | = i il
Feb 2012 Mar 2012 Apr 2012 May 2012

B MC Production M User Analysis I Group Production M Group Analysis W Validation
B Testing Data Processin g | Others

Maximu m: 154,378 , Minimum: 35,776, Average: 110,775 , Current: 139,430

O Available resources fully used/stressed (beyond pledges in some cases)
O Massive production of 8 TeV Monte Carlo samples

O Very effective and flexible Computing Model and Operation team - accommodate high
trigger rates and pile-up, intense MC simulation, analysis demands from worldwide
users (through e.g. dynamic data placement)
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Innovation in computing

1989: First high . 2012: LHC
e 1999: The Grid 2003: Several <
bandwidth . delivering
, vision Internet2 land :
transatlantic - intense data
: materializes speed records
links challenges

“

2001: CERN wins

1991: The W0r|d Computerwor|d’s 2008: The WLCG
Wide Web is 215t Century is the world’s
born at CERN Achievement Award largest grid

for SHIFT
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Collaboration on big data and computing
The Worldwide LHC Computing Grid

Tier-2 centres

Tier-0 (CERN): data GO nearly 160 sites

recording, xor Tier-1 centres
reconstruction and ”"f""?m““”'fs Gﬁﬁﬂﬂa
. . . |- ermany
distribution BNL = - ~250’000 cores

us & R RAL
Y ' .| UK

Tier-1: permanent '

storage, re-

processing, 5';'5,1 o

173 PB of storage
analysis

. rll I
CCINZP3 #75 |

|
P
SARANIKHEF 2

France

Tier-2: Simulation,

<
end-user analysis 2 million jobs/day
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Challenges in computing

-

(U

e LHC upgrades

Big(ger) Data

e New paradigms, science

e Computing evolution
e Next-gen interconnect

e Scientific leadership
e Sustainable computing
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Big(ger) data

Data rates at the LHC to increase by ~100x

Millions of
computing
cores?

Raw data:
an exabyte
per second?

Exabytes
stored
yearly?

“Sustainable computing”

Andrzej Nowak - Software optimization in the many-core era — the CERN case 16



PART 2: COMPUTING
LANDSCAPE



Co-design

Design software
independently
of the hardware

/

Optimize
software for the
hardware
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The Intel tick-tock model

T =

Source: Intel
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A “modern” CPU that really is archaic

 As “stupid” as 50 years
___ ago
g Still based on the Von
. Neumann architecture
* Primitive “machine
language”
 Ferranti Mercury:
— Floating-point calculations:
| Add: 3 cycles; Multiply: 5 cycles
'« Today:
— Programming for performance

is the same headache as in the
past
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Omnipresent multiplicative
parallelism

e instruction level (superscalar)
e pipelining

e vectors
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Inside a modern PC platform

SOCKETS CORES THREADS
( N
h N
BEE
—_ F PORTS
(SUPERSCALAR)
VECTORS PIPELINING
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Medium-term hardware trends

Pricing follows market pressure, not
technology

IO, disk and memory do not progress at the
same rate as compute power

— bytes/FLOP decreasing

— pJ/FLOP decreasing

Bulk of improvements in x86 comes from
Moore’s Law still being in effect

Heterogeneous architectures — cross
platform, cross socket, hybrid CPUs,
accelerators, split into throughput and classic
computing

Andrzej Nowak - Software optimization in the many-core era — the CERN case 24



Vector computing comes back
with a vengeance

| .-
e
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Vectors

Comeback with a vengeance but lessons learned 20 years ago:
growing substantially

— 128-bit SSE — 256-bit AVX (designed for more)

— AVX: new execution units

— LRBni (Intel MIC): 512 bits, new vector instructions, FMA, 3-4op

Good news:
— can now hold 4 doubles Intel@AVX.
— only one architecture to worry about
— plenty of technologies to choose from
— compilers getting increasingly better at autovectorization (can get 2x)

Bad news:
— increasingly a key element in the performance equation
— not everything will vectorize

— iterative and auto-vectorization are promoted, but are not the “magic bullet”
solution for many legacy workloads

— good vectorization requires a data centric design (sacrifices have to be made)
— bad past experience (before PCs)
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Intel64 & ILP considerations

x86 microarchitecture
— steady, but limited improvements (<10% per “tock”)
— increasingly advanced features — can large code benefit?

Frequency — very modest changes, if any
— Rise of the Turbo boost

CPI for large code is often too high, literally wasting CPU
power

— CPI figures for the major experiments hover around 0.9-1.5
C++/00D abuse will produce significant side-effects

— Very frequent jumps and calls + more

— Dynamic code has penalties — x86 is already quite good at executing it
but there are limits

Pipelining not discussed explicitly as it folds into ILP

Andrzej Nowak - Software optimization in the many-core era — the CERN case 27



Hardware threading

Sharing of some CPU resources
— Little on-die overhead

— The OS makes few distinctions between threads and
cores

A part of the solution to bad ILP

Free money
— Usually between +20% and +30%

— Recommendation: use whenever possible, good for
simulation

Does not help in all cases — depends on
the bottleneck

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Multi-core vs. many-core

A typical modern workhorse machine has 12-16
cores

— Some have 48 or more (AMD)
— Major datacenters can be 1 or 2 generations behind

# of cores “at home” grows arithmetically

— various reasons, most linked to the way people use their
computers

# of cores in the enterprise space still grows
geometrically (per platform)

The number of cores in the datacenter grows
between the two, will slow down in the long run

— The trend is important, not the end amount
— |Is the trend sustainable? What about all these transistors?

Andrzej Nowak - Software optimization in the many-core era — the CERN case

29



Multiple sockets and systems

Sockets - slight growth with a limit, ultimately
impacts core count per platform
Multi-machine

— mostly HPC

— HTC: independent machines and processes

Many-core is not multi-core

— Memory hierarchy issues pop up

e Cache coherency
e NUMA
e Memory bandwidth or IO paths may be constraining

— Strong scalability tanks (need weakly scalable workloads)

Multiprocess is a convenient model that can do
the job, but it is not sustainable nor scalable

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Corollary

Raw platform performance is expanding
in multiple dimensions simultaneously
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The CERN case: physics jobs

Independent events (collisions of particles)
— trivial (read: pleasant) parallel processing

Bulk of the data is read-only

Very large aggregate requirements:
— computation, data, input/output

Chaotic workload

— research environment - physics extracted by iterative analysis:
Unpredictable, Unlimited demand

Compute power scales with combination of SPECint and
SPECfp

— Good double-precision floating-point (10%-20% of total) is important!
— Good transcendental math libraries needed

 Key foundation: Linux together with GNU C++ compiler

From S. Jarp

Andrzej Nowak - Software optimization in the many-core era — the CERN case 32



Large jobs - profile fragmentation

FullCMS function profile, instructions retired

2, 000%
7.000%
. 000"
5,000

4.000

Contribution to profile

LRI
L UL

1

1.000
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Where is High Energy Physics
code now?

Large C++ frameworks with millions of lines of code
— Thousands of shared libraries in a distribution, gigabytes of binaries
— Low number of key players but high number of brief contributors
Large regions of memory read only or accessed
infrequently
Characteristics:
— Significant portion of double precision floating point (10%+)
— Loads/stores up to 60% of instructions

— Unfavorable for the x86 microarchitecture (even worse for others)
* Low number of instructions between jumps (<10)
* Low number of instructions between calls (several dozen)

For the most part, code won’t fit accelerators in its
current shape

Intensive upgrade efforts underway
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How does High Energy Physics
use hardware now?

Very limited vectorization
— Bad conditions to vectorize

Sub-optimal instruction level parallelism (CPI at >1)

Hardware threading introduced
— Memory constriants

Cores used well through multiprocessing — bar the stiff
memory requirements

— However, systems put in production with tender related delays
Sockets used well
Multiple systems used well

Relying on in-core improvements and # cores for scaling

Andrzej Nowak - Software optimization in the many-core era — the CERN case 35



Where are we now?

uNopTIMiZED | ] 0.80 1 6 pi
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Using a low single digit percentage of
raw machine power available today

Yo

Nvﬂw onvy /

peveentage heve
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Corollary

Need to program for tomorrow’s
hardware today

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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| HYPERJET ENGINE STATUS

LUDICROUS SPEED

PLAID

PART 3: EFFICIENT CODE
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SW performance dimensions

Sockets Cores HW threads

Vectors (Pipelining) (ILP)
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The parallel technology stack
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AVX data layout

| LANE DIVISION

single | single | single [ [ single | single | single

SINGLE PRECISION |

SCALAR
single
double double double double

DOUBLE PRECISION

SCALAR
double
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Programming with vectors

Classical tradeoff: code manageability vs.
speed

AoS vs. SOA

— SoA favored

Available levels of abstraction
— Assembly

— Intrinsics (C/C++)

— Auto-vectorization (C/C++)

— High level and interpreted code

Data-centric design is key

Andrzej Nowak - Software optimization in the many-core era — the CERN case 43



Auto-vectorization and vector
notations

« Compilers are
becoming increasingly

effective in auto_ Example: FIR Scalar Code
for (i=0; i<M-K; i++){
vectorization o STy S S

s+= x[i=j] * c[]]:

— ICC leading the effort, GCCis |

. i y[i] = s:
behind but pushing forward §

— Numerous caveats and for (i=0; i<M-K: i++)(

. c Fi1] = sec reduce add(x[1:K] * c[0D:K]):
dependencies: need to align |
data, use pragmas, restrict

v[0:M-K] = 0;

keywords etc. for (3=0; 3<K: 3+4) ¢

 Array notations gaining -
popularity (CEAN etc)

Andrzej Nowak - Software optimization in the many-core era — the CERN case 44



Amdahl’s Law

Amdahl's Law

Q. E
S c
© E
@ E
(<] F
o E
) E
x F
(4] E
= £

9 10 20 30 40 50 60 70 80 90

Sequential %
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Gustafson’s Law

Often when the problem size increases, the
sequential portion remains constant

Therefore, as the problem size increases, so
do the opportunities for parallelization

Let a(n)be the sequential portion function of
the program, diminishing as n approaches
infinity

Speedup = a(n) + N(1-a(n))

As n approaches infinity, the speedup
approaches the number of processors N

Andrzej Nowak - Software optimization in the many-core era — the CERN case 46



A plethora of options for
parallelism (subset)

OpenMP  Less mainstream:
CUDA — Axum
pthreads — Co-array Fortran
MPI — UPC
Cilk o

. : — Chapel
Ct/RapidMind/ArBB _ Fortress
TBB — X10
OpenCL — Erlang
Boost threads — Linda
Concurrent — Haskell

Collections

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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The Hype Cycle

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

Modeled after Gartner Inc.

Andrzej Nowak - Software optimization in the many-core era — the CERN case 48



Tradeoffs in software development
(with focus on hardware)

Flexibility and programmability vs.
performance

— Impacts the choice of the programming language,
technologies etc

Revamp vs. iterative improvement

Homogeneous vs. heterogeneous processing
model

Single/multi process vs. multi-threaded
Data-centric software design or not?
Kernels vs. heavy code

Program for specific architectures or not?

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Key aspects in any choice

Is the
choice

AR

Longevity

Is it
necessary?

Preceding
scientific
evaluation

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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C++ specific issues

 Key performance related aspects of the
C++ language:
— the compiler is particularly important
— memory allocation
— virtual mechanisms
— small and temporary objects

e Large projects in C++ produce extreme
optimization challenges

— Highly fragmented profiles, few instructions/jump,
few instructions/call

— Difficult without collaboration from domain experts

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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STL Container Efficiency

With material from A. Lazzaro

I o ) O o o o o

Bidirect'l N log N

deque T 12 C Random C at begin or C at begin or N N log N
end; else N/2 end; else N

Random Catend;elseN Catend;elseN N N log N

Bidirect'l log N log N log N

Bidirect'l log N d log (N+d) log N

Pair, Key Bidirect'l log N d log (N+d)

T C
T C

Andrzej Nowak - Software optimization in the many-core era — the CERN case

_ Pair, Key Bidirect'l log N log N log N




Other C++ tips (1)

Avoid virtual functions and classes -
extra memory, indirections, compiler
optimizations prevented

— Use C++ templates where possible
dynamic_cast can be expensive
Conditions are evaluated from left to right

Switch statements prevent branch
prediction

— Avoid unless absolutely necessary

Use STL with caution

With material from A. Lazzaro
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Other C/C++ tips (2)

Dynamic memory allocation will suffer from
fragmentation

— Use pools

— Pass arguments by reference

— Reuse objects instead of creating new ones
— Avoid temporary variables

Data locality matters

Code locality matters in large code
Align data for vectorization

Pay attention to floating point math
Always help the compiler

With material from A. Lazzaro

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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The complexity of a large

software project

Strategy and hardware-related
requirements are a must when the
hardware is a variable

Hard to plan for unknowns, but easier to
plan for changes

Requirements management
Software middle-men threaten scalability

Long time to produce and stabilize

— Consequently: faraway targets should be considered,
not current
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PART 4: OPTIMIZATION

Andrzej Nowak - Software optimization in the many-core era —the CERN case



Performance optimization is:

Fair
benchmarking

e \Workload characterization

Problem

e e e Performance monitoring

Bottleneck

L. e Performance tuning
elimination

Andrzej Nowak - Software optimization in the many-core era — the CERN case 57



Benchmarking tips

Be objective

Be in control
— Especially: PIN YOUR JOBS (CPU and memory)

Choose representative, stable, correct
benchmarks

Choose good metrics
— Throughput, latency, scalability, etc...

Repeatability
Keep a log

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Benchmarking control

« Benchmarking a modern PC has become a complex issue:
— CPU frequency
— Number of cores
— Number and configuration of sockets
— Vector and floating point usage
— Cache
— Memory size and layout
— BIOS and firmware version
— Hardware threading on or off
— Turbo mode on or off
— Power consumption
— Virtualization
— Operating system version, kernel, libraries
— Compiler version and flags
— Pinning to cores and to NUMA memory

Andrzej Nowak - Software optimization in the many-core era — the CERN case



Tuning - reality check

Level Potential gains Estimate

Source code

Operating system

Andrzej Nowak - Software optimization in the many-core era — the CERN case 60



Performance monitoring

Program
execution
Actionable
Analysis information
Collection

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Measuring performance

The most common performance measurement unit
is time

— Wall clock time — “how long do | have to wait for it to be done?”

— CPU time — “for how long is the computer busy?”

— Latency — “how long do | have to wait to get an answer?”

— Throughput — “how much of X in a period of time?”

Minimizing time/latency is not the same as
maximizing throughput

— and vice versa —i.e. see Amdahl’s and Gustafson’s laws
1 second: 9,192,631,770 periods of specific
radiation of 133Cs

— 1 second is just 1 event, composed of individual events (oscillations)

What if there could be a different “event” to define
performance? Or a whole set of them?

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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An OS abuses your trust

 100% CPU utilization in “top”? Awesome.
Aren’t we done here?

 Maybe not:
— Spinlocks
— Pointless iterations
— Floating point side effects
— Memory traffic
— etc etc

e Use performance counters to obtain an
accurate image

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Performance monitoring in
hardware

Most modern CPUs are able to provide real-time
statistics concerning executed instructions via a
Performance Monitoring Unit (PMU)

The PMU is spying in real time on your application (and
everything else that goes through the CPU)

Limited number of “sentries” (counters) available, but
they are versatile

Counters monitor events as they happen
Recorded occurrences are called samples or counts

Typically on modern Intel CPUs:
— 2-4 universal counters per HW thread: #0, #1 (#2, #3)
— 3 specialized counters: #16, #17, #18
— Additional 8 “uncore” counters

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Performance events

Many events in the CPU can be monitored

— A comprehensive list is dependent on the CPU and can be extracted
from the manufacturer’s manuals or from relevant tools

— Examples: cache misses, instructions, cycles, loads, vector ops
On some CPUs (e.g. Intel Core), some events have bit-

masks which limit their range, called “unit masks” or
“umasks”

— Example: instructions retired: “ALL” or “only LOAD” or “only STORE”

Extensive information: Intel Manual 248966-023a

— Intel Manual 248966-023a “Intel 64 and I1A-32 Architectures
Optimization Reference Manual”

AMD CPU-specific manuals
— i.e. “BIOS and Kernel Developer’s Guide for AMD Family 10h

Processors” or “Software Optimization Guide For AMD Family 10h and

12h Processors”

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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The CPI figure and its meaning

 CPI - cycles per instruction

— Thanks to multiple execution ports (superscalar architecture), more
than one instruction can be executed per cycle

— In modern Intel CPUs, CPI can go as low as 0.25 = 4 instructions per
cycle

— CPl above 1.0 is generally not impressive

 The ratio of the number of CPU cycles spenton a

program to the number of program instructions
retired by the CPU

— CYCLES / INSTRUCTIONS

 Lower CPIl often means better efficiency

— This figure illustrates the CPU usage efficiency in an indirect way, and,
like all ratios, can be tricky to interpret
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Simple CPl demo

CPI =
1.25

. cycles

instructions

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Simple cache miss demo

50 cycles of work (incl. L1 consultations/misses)
. 50 cycles of work with one L2 cache miss

. 50 cycles of no work

profiled
section

Assuming 20% of the instructions are loads and 3% of L2 misses...

~35% cycles wasted, program runs ~60% slower!
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False Sharing

tab[0]++;

Thread 1

tab[0]++;

tab[1]++;

Thread 2

tab[1]++;

Andrzej Nowak - Software optimization in the many-core era — the CERN case
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Event Based Sampling

...
Instruction Pointer

Counter (+1)

Overflow

S Performance
Executed monitoring interrupt

PMI service routine

Logged IP sample
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Optimization tips (1)

 Unimpressive CPI/ stalls
— Doing too many operations?
— Large latency instructions in the code?
— Using vector instructions?
— Do a stall analysis to see where and why you’re stalling

« Cache misses, false sharing
— Memory access characteristics
— Data structures and their layout
— Does your program fit in the cache?
— Help the hardware prefetcher!

— Do a cache analysis to see which data (and where) is not
serviced properly
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Optimization tips (2)

 Many mispredicted branches
— |s there a way to restructure the code?
— |s there a way to make the “ifs” more predictable?
— Rearranging conditions and loops
— Too many jumps / function calls?

— Sample with branch events (e.g. in perfmon2 or PTU) to
locate offending pieces of code

 Excessive floating point operations
— Does everything need to be calculated?
— Are you running in loops?
— Could some results be reused?
— Do you really need that much precision?
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Additional tips

« Pay special attention to memory access patterns

— How does your programming language, compiler and allocator lay out your
structures and variables? Is it better to leak or to “free()”?

— What is the temporal and spatial locality of your data?
 Temporal locality: accesses to the same data in a short time frame

e Spatial locality: accesses to nearby data in a short time frame

— Consider your memory usage model
e Dataset

e Data organization

* Data access patterns

— This area will only grow in complexity in the upcoming years
 The Pareto (80/20) principle
— Sometimes adapted to “90/10”
— Might suggest that improving 20% of code will give you 80% of your results

— Might also suggest that 90% of the time is spent in 10% of the code — Is it true for
large applications with their C++ fragmentation and large codebases?
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Relating to design

« Choose best available algorithms

— Re-implementing an algorithm is usually the last thing you will want to do
when “it” finally works

 Choose the appropriate programming
language

— Managed and VM languages are not performance friendly; optimizing
properly is often impossible

— Common tradeoff: an object oriented language values form over
performance, and C or Fortran the other way around

 Make informed decisions. The optimal
method of doing something isn’t always
the fastest one, but you need to know why
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Common misconceptions

On hardware
— Myth: “Performance is a hardware issue”
— Reality: See the slides on Moore’s Law
On responsibility
— Myth: “Performance should be handled by the compiler and libraries”

— Reality: no compiler and libraries will fix poorly written code (remember
the elephant)

On premature optimization
— Myth: “Premature optimization is the root of all evil”

— Reality: an often misunderstood quote, referring to not optimizing
bottlenecks that are not yet apparent — not to “any optimization” as a
whole

On “GOTO programming”
— Myth: GOTO programming is entirely bad
— Reality: It’s a tradeoff — see the assembly “jmp” instruction
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True pitfalls

The rule of diminishing returns

— The amount of benefits that you can get with a relatively small effort is
limited; each additional investment will yield less results

Not knowing your limits and not knowing when to stop
Over-optimization can do damage
— Especially if you optimize for a certain processor family: consider placing
highly optimized routines in CPU-specific libraries
Double-check your results

— Flukes aren’t common — they’re frequent! Consider this talk for an idea of the
hardware complexity you have to deal with

Wrong or overlapping optimizations can do damage
— Optimize when the time is right, but design with optimization in mind

— Premature micro-optimizations (of unquantifiable benefit) can reduce the
readability / comprehension / maintainability of the code and threaten
correctness

— DO NOT wait until the end of the project to optimize
Under-optimization is not worth the time

— Do it right —and remember that the penalty for abandoning the benefits of
new platforms or techniques can be very high!
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Tuning summary

Get the right tools for the job
Master the 7 performance dimensions

Scalable designs and high performance
are friends
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PART 5: FUTURE
CHALLENGES



The CERN openlab

A unique research partnership of CERN and the industry
Objective: The advancement of cutting-edge computing
solutions to be used by the worldwide LHC community

Partners support manpower and equipment in dedicated
competence centers

openlab delivers published research and evaluations based
on partners’ solutions — in a very challenging setting

Created robust hands-on training program in various
computing topics, including international computing
schools; Summer Student program

PARTNERS

Past involvement: Enterasys Networks, IBM, Voltaire, F- [ﬁﬂ intel.
secure, Stonesoft, EDS; Future involvement: Huawei o=y
Now in phase IV: 2012-2014 ORACLE SIEMENS

http://cern.ch/openlab
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The Platform Competence
Center

Focus on efficient computing

Technology Research and -
monitoring experimentation

e Recommendations

e Papers,
conferences
e Education

* Tracking * Benchmarking
® Analysis e Parallelization

e Forecasting ¢ Optimization

Close collaboration with the Physics
department at CERN
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PCC - particular interests

Compute optimization
— Absolute, per CHF, per Watt
— Optimization tools

Compilers

Parallelization

— x86 compatible technologies spanning the whole range
from OpenCL to MPI

Accelerators
— Intel MIC, limited interest in GPUs, combos

Storage
Next phase V in 2015-2018 (Exascale era)
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Intel MIC at openlab
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MTG4 on MIC - example profile

Function / Call Stack CLK % INST %
sgrt 14.35% 22.16%
exp 6.47% 9.47%
atan2 4.22% 6.31%
CLHEP::RanluxEngine::flat 3.24% 5.60%
G4ElasticHadrNucleusHE::HadronNucleusQ2 2 3.01% 2.41%
G4PhysicsVector::Value 2.76% 0.95%
log 2.22% 2.85%
G4VoxelNavigation::LevelLocate 2.05% 0.66%
G4VoxelNavigation::ComputeStep 1.64% 1.10%
G4ClassicalRK4::DumbStepper 1.59% 2.96%
G4SteppingManager::DefinePhysicalStepLength 1.54% 1.39%
G4Navigator::ComputeStep 1.40% 1.01%
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Teaching

* International computing schools

« Workshops
— 10 workshops in 2012
— >350 participants
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ICE-DIP

EU Framework Program 7 project looking for
(amongst other things) efficient methods of
accelerator/co-processor use

Focus on data taking past 2016

Of particular interest

— Getting data into the platform

— Getting data into the accelerator/co-processor
— Efficient processing

— Efficient distribution of results

What role for software?

| r
We will employ 5 PhD students to work on Cg

Are you interested?

MARIE CURIE ACTIONS

Si Photonics, FPGAs, networks, many-core
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Possible future directions

* Software replacing hardware g2 .}
— Programmability replaces rigid SRS S g
structures

* Intensive compute
— Local farms must have much higher

processing capacity

e Accelerators

PSSR [intel Pracessnr foprerds

[y

— Experiments with Intel MICand GPUs = 112
« Silicon photonics o
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